Pearson

Mark Scheme (Results)

January 2017

Pearson Edexcel
International Advanced Subsidiary Level in Chemistry (WCH03)
Paper 01 Chemistry Laboratory Skills I

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2017
Publications Code WCH03_01_MS_1701*
All the material in this publication is copyright
© Pearson Education Ltd 2017

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.
Full marks will be awarded if the candidate has demonstrated the above abilities.
Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 (a)}$	(Observation with potassium chloride) lilac / purple / mauve / violet	Chlorine gas in addition but only penalise once	(1)

For 1(d) Mark the gases separately from the observations. Deduct a mark for incorrect information, eg in (d) hydrogen chloride and hydrogen would not score M1 (+1-1=0) but hydrogen bromide, bromine and hydrogen sulfide would score M3. (+2-1 = 1)

Question Number	Correct Answer	Reject	Mark
1(b)	(Observation with potassium sulfate) white precipitate / ppt ALLOW white solid / white crystals IGNORE names of precipitate even if incorrect (Observation with potassium carbonate) fizzing / bubbles / effervescence / turns limewater cloudy AND carbon dioxide / CO_{2} IGNORE References to NO white precipitate / NO white solid / NO white crystals (1)	Just 'turns white' Any bubbles / any named gas / any gas released Any precipitate	2

Question Number	Correct Answer	Reject	Mark
1(c)	(Observation with ammonium sulfate) (red litmus paper turns) blue STAND ALONE MARK (due to formation of) ammonia / NH_{3} (Observation with potassium sulfate) No change / no reaction / no observation /litmus paper remains red / no gas evolved / no ammonia / no NH_{3} / nothing IGNORE temperature change / dissolves	White smoke/ any precipitate Ammonium / NH_{4} SO_{2} /gas evolved/bubbl es/ effervescence / any precipitate	3

Question Number	Correct Answer	Reject	Mark
1(d)	Mark observations and gases independently (Observation with sodium chloride) M1: hydrogen chloride / HCl M2: Misty / steamy / white fumes OR white smoke with ammonia OR damp blue litmus paper red IGNORE Effervescence throughout (Observation with sodium bromide) M3: Bromine / Br_{2} M4: brown (fumes) / orange (fumes) ALLOW Red as a qualifier or red qualified by brown or orange, eg red-brown, orange-red (1) OR M3: hydrogen bromide / HBr M4: Misty / steamy / white fumes OR white smoke with ammonia OR damp blue litmus paper red OR M3: SO_{2} / sulfur dioxide M4: (acidified) $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ from orange to green / damp blue litmus paper red (1)	Chlorine / sulfur dioxide Just white smoke Yellow / green gas Any additional incorrect products e.g. $\mathrm{H}_{2} \mathrm{~S} / \mathrm{S}$ Just 'Red fumes/gas' Coloured fumes eg creamy Hydrogen sulfide / $\mathrm{H}_{2} \mathrm{~S}$	4

Question Number	Correct Answer	Reject	Mark	
2(a)	Mark Independently (Test) (dilute) nitric acid / HNO_{3}	(1)	Conc. HNO_{3}	2
	(Inference) chlorine / Cl	$\mathrm{Cl}^{-} /$'chloride' / chlorine ion		

Question Number	Correct Answer	Reject	Mark
2(b)	(Test any gas evolved with) $($ concentrated / dilute) ammonia / $\mathrm{NH}_{3} / \mathrm{NH}_{3}(\mathrm{~g}) / \mathrm{NH}_{3}(\mathrm{aq})$	NH_{4} Ammonium	$\mathbf{2}$
	(1)	(Inference) $\mathrm{NH}_{4} \mathrm{Cl}$	Ammonium chloride NH 3 Cl

Question Number	Correct Answer	Reject	Mark
2(c)	(Observation) stays orange ALLOW does not turn (from orange to) green / no visible change / no colour change	Just 'no reaction' stays yellow	2
	(Inference) tertiary / 3 (alcohol) ALLOW Recognisable near miss-spelling	(1)	

Question Number	Correct Answer	Reject	Mark
2(d)	 ALLOW Displayed formula / skeletal formula $/\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH} / \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{OH} /$ $\mathrm{CH}_{3}-$ rather than $\mathrm{H}_{3} \mathrm{C}-$ IGNORE Position of connectivity on vertical bond to OH .	$\mathrm{OH}-\mathrm{C}$	1

(Total for Question 2 = 7 marks)

Question Number	Acceptable Answers	Reject	Mark		
$\mathbf{3 (a) (i)}$	$(4.20 \div 84.0=) 0.05(00)$		$\mathbf{1}$		
Question Number Acceptable Answers Reject Mark $\mathbf{3 (a) (i i)}$ $(50.0 \times 4.18 \times 7.0=) 1463(J)$ IGNORE SF except 1 SF -1463 $\mathbf{1}$					
:---					

Question Number	Acceptable Answers	Reject	Mark
3(a)(iii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF $\Delta H_{1}=+29.3\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ 1st mark: $1463 \div 0.05=29260\left(\mathrm{~J} \mathrm{~mol}^{-1}\right)$ OR $1.463 \div 0.05=29.260(\mathrm{~kJ}$ mol^{-1}) TE for answer to (a)(ii) $\div(a)(i)$ 2nd mark: Round answer to 3 SF and in kJ mol^{-1} 3rd mark: + sign needed for final answer but may be shown before the answer line		3

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3 (b) (i)}$	Answers may be given in either order:		2
	1st way: Temperature decreases for NaHCO_{3} /reaction 1 and Temperature increases for $\mathrm{Na}_{2} \mathrm{CO}_{3} /$ reaction 2 IGNORE Endothermic (reaction 1) and exothermic (reaction 2) 2nd way: (Magnitude of) ΔT for NaHCO_{3} Smaller than that for $\mathrm{Na}_{2} \mathrm{CO}_{3}$		

Question Number	Acceptable Answers	Reject	Mark
3(b)(ii)	No heat / energy lost / gained (to/from the surroundings) OR Reactions go to completion OR S.H.C. of solution / $\mathrm{HCl}(\mathrm{aq})$ is the same as that of water /is $4.18 \mathrm{~J} \mathrm{~g}^{-1}$ ${ }^{\circ} \mathrm{C}^{-1}$ OR Density of solution / $\mathrm{HCl}(\mathrm{aq})$ is 1 g cm^{-3} OR Mass solution is 50 g	No transfer losses 100 \% purity of chemicals No side reactions / other products formed	1

Questio n Number	Acceptable Answers	Rejec t	$\begin{aligned} & \hline \text { Mar } \\ & \mathrm{k} \end{aligned}$
3(c)(i)	Correct species and balancing Correct state symbols Dependent on all correct species with no extra species		2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3 (c) (i i)}$	$\Delta H_{\text {reaction }}=\mathbf{2 \Delta H} H_{1}-\Delta H_{2}$	$=\Delta H_{1}-\Delta H_{2}$	$\mathbf{1}$
	$\Delta H_{\text {reaction }}=\mathbf{2 \Delta H}+\left(-\Delta H_{2}\right)$		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3 (c) (\text { iii })}$	$\Delta H_{\text {reaction }}=(2 \times+29.3)-(-36.0)$ $=(+) 94.6\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$		$\mathbf{1}$
	ALLOW TE on BOTH value of ΔH_{1} previously calculated and the equation given in (c)(ii)	If $\left.\Delta H_{\text {reaction }=\Delta H_{1}-\Delta H_{2} \text { then }}^{(+) 65.26(\mathrm{~kJ} \mathrm{~mol}}{ }^{-1}\right)$ scores 1	If $\Delta H_{1}=29.26$ then $(+) 94.5(\mathrm{~kJ}$ mol $\left.{ }^{-1}\right)$ scores 1 IGNORE SF except 1 SF

(Total for Question 3 = 12 marks)

Question Number	Acceptable Answers	Reject	Mark	
4(a)	(From) colourless	(1)	'clear' for colourless	$\mathbf{2}$
	(To) (pale) pink	red / purple / magenta		
	ALLOW	(1)	red-pink / purple-pink etc.	
	(1) for "pink to colourless"			

Question Number	Acceptable Answers	Reject	Mark		
4(b)(i)	Ticks under titres 2 and 3 (1)		2		
	Check answer line first (1) $23.55\left(\mathrm{~cm}^{3}\right)$	One DP for final answer		\quad	Allow correct mean for any
:---					
combination of at least two					
ticked titres for the second					
mark	\quad				
:---					

Question Number	Acceptable Answers	Reject	Mark
4(b)(ii)	Shape of the meniscus correctly drawn. Allow any downward arc	V shaped Mercury meniscus Straight line	2
	Bottom of 'meniscus' or top of upside down 'meniscus' mid-way between 23.60 and 23.70	(1)	

Question Number	Acceptable Answers	Reject	Mark
4(c)(i)	$\frac{0.05(00) \times 25(.0)}{1000}$ $=0.00125 / 1.25 \times 10^{-3}$ $(m o l)$ IGNORE SF except 1 SF		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
4(c)(ii)	Answer to (c)(i) $\times 2$ $=0.0025(0) / 2.5(0) \times 10^{-3}$ $(m o l)$ IGNORE SF except 1 SF		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark		
4(c)(iii)	$\mathrm{c}(\mathrm{ii}) \times \frac{1000}{23.55}=0.106\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$				
TE on mean titre					
IGNORE SF except 1 SF				\quad	$\mathbf{1}$
:---:					

Question Number	Acceptable Answers	Reject	Mark
5(a)(i)	$\begin{align*} & \text { Volume }=\frac{\text { mass }}{\text { density }} \\ & =\underline{6.24} \\ & (=6.4865) \\ & =0.962 \\ & \tag{1} \end{align*}$ Answer in the correct units $=6.49 \mathrm{~cm}^{3}$ Allow $\begin{equation*} 6.49 \times 10^{-3} \mathbf{d m}^{3} \tag{1} \end{equation*}$ IGNORE SF except 1 SF M2 dependent on M1 or near miss eg incorrect rounding	cm^{-3}	2

Question Number	Acceptable Answers	Reject	Mark
5(a)(ii)	1st mark - determine moles of cyclohexanol used $M_{\mathrm{r}}\left(\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{OH}\right)=100$ and $\frac{6.24}{100}=0.0624(\mathrm{~mol}) \mathrm{C}_{6} \mathrm{H}_{11} \mathrm{OH}$ 2nd mark - maximum mass of cyclohexene that can form $M_{r}\left(\mathrm{C}_{6} \mathrm{H}_{10}\right)=82$ and $\begin{align*} & 0.0624 \times 82(=5.1168) \\ & =5.12(\mathrm{~g}) \mathrm{C}_{6} \mathrm{H}_{10} \tag{1} \end{align*}$ IGNORE SF except 1 SF Correct answer, with or without working, scores (2)		2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{5 (a) (\text { iii) }}$	$\frac{1.64 \times 100 \%=32(.0) / 32.1}{\%}$		$\mathbf{1}$
	5.12		
	$($ N.B. $=32.051 / 32.1 \%$ if use $5.1168 \mathrm{~g})$ CQ on answer to part (a)(ii) IGNORE SF except 1 SF		

Question Number	Acceptable Answers	Reject	Mark
5(b)(i)	(Step 1) (Wash with) sodium hydrogencarbonate / sodium carbonate (solution) (Step 2) (Wash with distilled / deionised) water (Step 3) (Dry with any suitable drying agent, such as anhydrous) $\mathrm{CaCl}_{2} / \mathrm{Na}_{2} \mathrm{SO}_{4} / \mathrm{MgSO}_{4} /$ CaSO_{4} ALLOW Silica gel	NaOH Alkaline solution Calcium carbonate Calcium hydroxide	3

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{5 (b) (i i)}$	(Step 4) (Re-)distil(lation)		$\mathbf{1}$
	ALLOW Simple distillation / fractional distillation	IGNORE References to 'filter' / 'filtration'	

(Total for Question 5 = 9 marks)
TOTAL FOR PAPER: 50 MARKS

Pearson Education Limited. Registered company number 872828

